~A191 217 POISSON FUNCTIONALS OF MARKOV PROCESSES AND QUEUEING
NETWORKS(U) NORTH CAROLINA UNIV AT CHAPEL WILL

R F SERFOZ0 25 DEC 87 AFOSR-TR-88-0335 F49520-85-C-8144

UNCLASSTFIED F/6 1




I

I
I

A A K 0
RO PO .l- PORDE LN ’n‘. r.u‘. AR v., '.0".' '.. ...‘ .‘

UUCANCR AN ,‘.l
" L] ‘
‘.I R ..! 0|l " ...
LK)

0

1

NATIONA,

WY r
" "‘v‘a' Wi °a‘ o :l' 'o'
‘i‘ ' o, i 0

o

l

N
(&

I

s 2 y

i
50 A 22
E m mﬁ
Lol 120

==
ll=

n
o

I

e

MICROCOPY RESOLUTION TEST CHART
BUREAL i oTANDARDS-1963-A

. .,'.',.“'
. " "c "“.‘ St
0 o"y"a'
v'olo

X ,«*,

v‘.v CHIOP )

. )

.li',l'rﬂ'o
X) I‘,\.‘v"“f‘i V’A O ' (%]
"“‘.'u‘ nt' EUNY i.'



\

REPORT DOCUMENTATION PAGE

~y AD— A 1 9 1 2 1 7 1o RESTRICTIVE MARKINGS

DER o
<. " ] { fe -
o 3. 05T itls g ‘J‘JaJ
e <. semonn. —- — . DISTRIBUTION / AVAILABILITY OF REPQRT
g4 N/A CTE tg;‘ \-\11 -."ease'
¥ 1 ; e Appravcd fa!‘ 10y [+ o M
2b. DECLASSIFICATION / DOWNG SCHEDULE 2‘! 3 . 1ted
N/A APRb 4 1988 N distritutionunlimited.
j 4 PERFORMING ORGANIZATIQN NUMBER(S) S A S. MONITQRING ORGANIZATION REPORT NUMBER(S)
N
o .
o o AFOSR-TR- 28-0835
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL . | 7a. NAME OF MONITORING ORGANIZATION
Georgia Institute of Technology (If applicable)
AFOSR/NM
. 6c ADDRESS (Gty, State, and ZIP Code) 7o. AEP&&? m State, and ZIP Code)
; i 2
i Atlanta, GA 3033 Bldg 410
Bolling AFB DQ 20332-8448
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9 PRQCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicabié) < /
AFOSR NM f =0 B
8¢ ity, State, and ZIP Code 10. SOUR F FUNDI I
A%%M’" ! ) o ) CE_OF FUNDING NUMBERS
410 PROGRAM - }PROJECT TASK WORK UNIT
Bldg ELEMENT NO. | NO. NO. ACCESSION
Bolling AFBDC 20332-8448 k1102F 2304 s |
11 TITLE (Include Securrty Classification) -

Poisson Functionals of Markov Processes and Queueing Networks

o 12. PERSONAL AUTHOR(S .
e ) Richard F. Serfozo
5 ,

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) I'S. PAGE COUNT
Interim FROM10/1/86 10 9/30/87 1987/12/25 24
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse f necessary and identify by block number)
FIELD GROUP SUB-GRQUP Poisson process, multivariate compound Poisson process,
: functionals of Markov processes, queueing networks, time
gversal
M » ] 19. ABSTRACT (Continue on reverse if necessary and identify by block number) .
_f} We present conditions under which a point process of certain jump times of a Markov process

a Poisson process. One result is that if the Markov process is stationary and the compensat

of the point process in reverse time has a constant intensity a, then the »rint process is
Poisson with rate a. A classical example is that the output flow from a M/M/l queueing

A system is Poisson. We also present similar Poisson characterizations of more general marked
A point process functionals of a arkov process. These results-yield easy-to-use criteria for
. a collection of such processes to be multi-variate Poisson or marked Poisson with a specifje

dependence or independence. We give several applications to queueing systems, and indicate
how our results extend to functionals of non-Markovian processes.

20. OISTRIBUTION / AVAILABILITY OF ABSTRACT

21. ABSTRACT SECURITY CLASSIFICATION
Qunclassieieounumiteo O same s ,pT [ oric useRrs

unclassified
22a. NAME OF RESPONSIBLE INDIVIOUAL 22b. TELEPHONE (include Ares Code) | 22¢. WGCE SYMBOL
Maj. Brian Woodruff
0D FORM 1473, sa MaR 83 APR edition may be used until exhausted. SECURITY IF F_"HI$ PAGE
All other edt)ions are obsolete. '



» AFOSR-TR- 88-0335

Poisson Functionals of Markov Processes
W and Queueing Networks

) by

‘o Richard F. Serfozo
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B ABSTRACT

» We present conditions under which a point process of certain jump

) times of a Markov process is a Poisson process. One result is that if

W the Markov process is stationary and the compensator of the point process
o in reverse time has a constant intensity a, then the point process is

N Poisson with rate a. A classical example is that the output flow from a
", M/M/1 queueing system is Poisson. We also present similar Poisson

"y characterizations of more general marked point process functionals of a
o Markov process. These results yield easy-to-use criteria for a

e, collection of such processes to be multi-variate Poisson or marked

N Poisson with a specified dependence or independence. We give several
applications to queueing systems, and indicate how our results extend to

i runctionals of non-Markovian processes.
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) process, functionals of Markov processes, queueing networks, time
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1. Introduction

There are a variety of point processes associated with the jump
times of a Markov process. For instance, in a Markovian network of
queues, one might be interested in the point process of times at which
units move between two sectors of the network. More generally, if the
network has synchronous movements of items. one might be interested in
the marked point process of the times at which batches of units move
between two sectors and the numbers of units in the batches (the batch
size being the "mark”™ of the time of the movement). One can formulate
such a point process as a functional of the Markov process representing
the network. The typical aim is to describe the behavier of the point
process in terms of the characteristic of the Markov process. Some
immediate questions in this regard are: Is such a point process Poisson
(or marked Poisson)? Is a collection of these point processes
multi-variate Poisson (or marked Poisson); and what are the dependencies,
if any, among them?

These are the issues this study addresses. We begin in Section 2 by
presenting conditions under which a point process of certain jjump times
of a Markov process is a Poisson process. [t is well known that a simple
point process on the real line is Poisson with rate a if its compensator
has the constant intensity a (Theorem 2.3(i)). We present a reverse-tLime -— .

version of this (Theorem 2.3(ii)). It says that if the Markov process is ij

stationary and the compensator of the point process in reverse time has 3
the constant intensity a, then the point process is Poisson with rate a. St
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This is an easy-to-use criterion for establishing whether a point process
of jump times is Poisson. We also give necessary conditions for this
Poissonness. In Section 3, we present similar conditions under which
more general functionals of a pure jump Markov process are marked Poisson
processes. Some of our results overlap those of Melamed (1979), Brémaud
(1981), Variaya and Walrand (1981). and Disney and Kiessler (1987).
Melamed and Disney and Kiessler derive their results using a Markov
renewal argument and Brémaud. Variaya and Walrand use a filtering
argument. We use a simpler approach based on the notion of the time
reversibility of the compensator of a point process. This approach lays
bare the characteristics underlying the Poisson property, and it readily
extends to the more general settings in Sections 3-H.

The applications in this area have been primarily for queueing
systems. Burke (1956) and Reich (1957) showed that, in a stationary
M/M/1 queueing system, the output flow is a Poisson process with the same
rate as the Poisson input flow. Similarly. the exit flows from the
queues in a Jackson network are independent Poisson processes; this is
discussed in the references in the preceding paragraphs ana 1n nelly
(1979), Disney and Konig (1985) and Whittle (1986). In Sections 2-4, we
discuss applications identifying Poisson, compound Poisson and
multivariate-Poisson flows in single queues and in qucueing networks with
dependent nodes. We end in Section 5 by indicating how our results
extend to Markov processes with general state spaces and to lunctionals

of semi-Markovian processes.
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? 2. Jump Times of a Markov Process that Form a Poisson Process
e Let X = {Xt: t € R} be a Markov process with a countable state space
‘¥

v 4 and transition rates
h
R g(x.y) = lim P{X =y | X = x}/t, X £y,

) L 0

tlo

‘% and q(x.x) = 0. We indicate later how our results extend to a general
"
Y
ﬁt state space. We adopt the standard assumption that

o

" a(x):= 2 q(x.y) <@, x €1,

y

;s and that each sample path of X is right continuous and has a finite
.( number of jumps in any finite time period. Then the sojourn time of X in
& a state x is exponential with mean q(x)_I and., at the end of the sojourn,
[ 4
&

; X jumps to some state y with probability q(x.y)}/q(x). y€X. For
3
‘ convenience, we assume that X is irreducible.

'
(" We shall study the point process N on R defined by
K (2.1) N(A) = 2 f(Xt_.Xl)
[) t€A
‘.

N where A is a Borel set in Rand f: 7 x 1 - {0, 1} with {(x,x) =0, x € .
!

}
N The N(A) is the number of jumps of X from some x» to some y for which

'I

?‘ f(x.y) =1 in the time period A. Any such  is an indicator i ion
&
; f{x.y) = I{({x.y) € 8) of a subset S of ¥ x I that does not contain pairs
Y
K of identical values: the N(A) would then be the number of ftransitions of
t X in the period A that take place in the transition set S. Clearly N(A)
L
¥ e - 4

i is finite when A is bounded and it may be infinite when A is nnbounded.
()
‘otd

s\ We shall frequently use the function

<
h) (2.2) a(x) = 2 q(x.y)}f(x.y). x € d.

v y

- -
‘: First note that "the mean measure of N is

-
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(2.3) EN(A) = ]Alitx(xl)dt

which is Levy's formula (sce for instance Benveniste and Jacod (1973)).
When X is stationary, an easy check shows that N is stationary (i.e. for
any Al""'An' the distribution of N(Al+t),.... N(A”+t) is independent of

t). Consequently, EN(s,t] = a(t-s), s < t in R, where

(2.1) a = EN(0.1] = 2 w(x)q(x.y)f(x.y)
X.y

and m(x) = P(thx) is the equilibrium (or stationary) distribution of X.
Here O ¢ a ¢ @. Also, with probability one, L_IN(s.s+l] - aas t - o

One can use N to model a variety of event occurrences of X by

appropriate selections of . For instance. suppose X takes values in
A = ZT. the m—dimensional vectors with nonnegative integer-valued
entries. Then N records the downward jumps of X when f(x.y) = | iff

X # y and xj D yj. i=l.. ... m. Similarly., N records the jumps of X at
which the maximum component does not change when f(x.y) = 1 itf x # y and
mx X, = max y ..

J i

We shal! investigate conditions under which N is a Poisson process.

We say that the future of N is independent of the past of X, dcuoted

N, Lx_ | ir {N(A): A C [t.,»)} is independent of {Xu: u < ), t €R,
({X : u < t} can be replaced simply by Xl since X is Markovian).

u

Similarly, N_ 4 X+ denotes that the past of N is independent of the

future of X. Our first result is that these conditions are sufficient
for N to be a Poisson process: the N might be a non-stationary Poisson

process. We write "N is Ma)” to mean that N is o stationary

Wy

Ty o Y
U
e Ve, ¢ -'.?I.;?l'.el'



( time-homogeneous) Poisson process with rate a. The degenerate case a =
O corresponds to N = O; the case a = ® is not possible.

Theorem 2.1. If N+ Lx or N_4 X+, then N is a Poisson process. In
this case, N is P(a) if and only if Ea(XL) =a. t € R.

Prootf. The N is a Poisson process if it is simple {i.e.. N{({t}) = O or
I, t € R), it has no fixed atoms and has independent increments (i.e.,

N(Al),....N(An) are independent for disjoint A .An); see p. 58 of

1
Kallenberg (1983). Since the probability is zero that X has a jump at
any specified time, it follows that N is simple with no fixed atoms. Now
suppose N+ L X_. Then. for any s < t in R.

P{N(s.t] =n | N(A) : A C (-=,s]}
P{N(s.t] = n}.

Thus N has independent increments and hence N is Poisson. This

= E[P{N(s.t] =n | X_ : r < s}]

conclusion also follows when N_ 4l X+ since
P{N(s.t] = n | N(A) : A C [t ,»)}

= E[P{N(s.t] =n | X :u > t}]

u

P{N(s.t] =

Ihe second assertion on the stationarity of N follows from (2.3).0

Remark 2.2. From the proof, it is clear that the first assertion of
Theorem 2.1 is true for any pure jump stochastic process X: the Markovian
property is used only for the second assertion. Also, both assertions
are true when X is a Markov process that is not time homogenecous (its
transition rates are time dependent). Melamed (1979) showed that N+ Ly
implies that N is Poisson; his argument relies on the property that X and

{(N(s.t]. X[)I t 2> s} are Markovian.
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N We now discuss conditions on the parameters of the Markov process X
L)
o under which N is ®{a)}. When X is stationary with equilibrium

M)

)

r- distribution m, we shail frequently use the function

] . * -1 o .

rf (2.5) a (x) = w(x) S w(y)ql{y.x)f(y.x), x C 1.

v" y

:ﬂ Theorem 2.3. (i) If a(x) = a, x € 7. then N_ L x_ and N is Ma). (ii)
! If X is stationary with equilibrium distribution r, and a*(x) =a, x € 7,
. »

" then N_ 4 X, and N is #(a).
& Proof. Assertion (i) is a special case of Theorem 18.9 in Liptser and
S
:f‘ Shiryayev (1978) (or Theorem T5 in Bremud (1981)). which says that a

\

*
i‘ simple point process on R is ¥(a) if its compensator has the non-random

intensity a. In our setting, for each s € R, the process

(2.6) M= N(s.s + (] - /:“ alX, )du

DRI 3 &

is an #t—martingale, where ﬁt = U(Xui $ Cu s + t); the process

L,
© B

A

sttt
t = Is

(X }Jdu is the compensator of N(s, s + t] and a(Xl) is the

3

intensity of this compensator.

€
To prove assertion (ii), consider the process Xt = X_[, t € R, where

L LRS,

»
X( = X[_. The X is the right-continuous time-reversal of X. Each

*
sample path of X is the same as a sample path of X traversed in the

srEEEs

opposite direction, and vice versa. Since X is statiomiry, it follows

23

»* : . . L
that X is an irreducible, stationary Markov process and its transition

-

rates are

-
- " o w8

a¥(x.y) = m(x) 'm(y)aly.x). x.y €.

»
-
-

i Define the point process N* on R by

)

X N(A) = ¥ LX)
) - tCA

|$ where f*(x.y) = f(y.x). x,y € 7. Clearly N*(A) = N(-A). for each A, and

N W L) 9 a8 it [ % g
S e -"n":‘.:".o R TRNh |.0'h\o".o".n N :fo'h..'of"t.:' 't,.' 'm'; WRROC a.n\u..‘ v'i. .‘h‘.a.o" "uu.k. et




2
so N is the time-reversal of N. Consequently, N is (a) if and only if
)

N is P(a).

Now observe that a*(x) =3 q*(x,y)f*(x.y). That is, a is the
y

. »* * . . . .. *
function a for the processes X , N . Then an application of (i) to X N
* g% * .
says that N+ X_and N is ®(a). But these statements are eqivalent to
. 1 . . * »
the respective statements that N_ X+ and N is P(a), since X . N are
the time reversals of X ,N.0O
Remarks. (1) In Theorem 2.3, statement (i) is the well-known
property of Markov processes that N is P(a) if the intensity u(Xt) of N's
compensator equals the constant a. Statement (ii) is simply a reversed
time version of (i): it is (i) in terms of X and N viewed in reverse
. . * . . . . * %
time. The a is the reversced time version of o in the sense that «a (XL)
is the intensity of the compensutor of N in reverse time. Also, N_ 4 X+
in (ii) is the time reversal of N+ L Xx_in (i). (2) Note that the
process X in (i) may be transient, recurrent or non-stationary: but in
(ii), X must be stationary. (3) In consulting the references for
Theorem 2.3(i), one can see that this result is true for a non-Markovian
process X for which a: 4 - R+ is a function such that the process Mt in
(2.6) is an ﬂ[—martingale. Similarly, it follows that Theorem 2.3(ii) is
- . g * . . .
true for a non-Markovian process X if a : ¥ = R+ is a funciion such that,
for each seR,
%* S *
= s—t,s) - a (X )du
M= N[s-t.s) - [ @ (X,)

. € . -
is an #t—martlngale where o= U(Xui s—t ¢ u < s).
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In applications, the Poisson property of N due to a(x) = a, x € 4,
is usually foreseen, while the Poisson property of N due to a*(x) =a, x
€ 41, might not be anticipated. lHere is an example.
Example 2.4. M/M/!1 and Batch Service Queues. Suppose the Markov process

X has the state space Z+ and transition rates

g{n.n + 1) = A n € Z+
q{(n,n -~ K) = n > K
q{(n.,0) = p n < K

where A, p and K are positive. This process represents the number of
customers in a queueing system in which customers arrive singly at the
rate A and are served in batches such that when n > K customers are in

the system, then batches of K customers depart at the rate p: and when

n < K customers are present, then all of the customers depart at the rate
. When K = 1, this is the M/M/]1 queueing system.

Implicit in the description of this queueing system, the point
process N of customer arrivals is ®(A), regardless of whether X is
transient or recurrent. Indeed, this follows from Theorem 2.3 (i) since
N is defined by (2.1) with f(n.n') = | ift n' = n + | and

a(n) =2 q(n,n")}f(n,n") = g{n.n + 1) = A.
n'

Now, suppose that N denotes the point process of times at which
batches of size K depart from the system. This is defined by (2.1) with

f{n.n") =1 iff n'" =n - Kand n > K. In this case,

a(n) = g(n,n - K)I{n > K) = ul{n 2 K).

This depends on n, and so Theorem 2.3 (i) does not ensure that N is

-

Poisson. However, assume that X is stationary. Necessarily, A < puK and

the equilibrium distribution of X is

Wty



n::‘!
i"::
!
- 9
'y
"\'b
Y
I.: n
d r{n) = o (1 - ). n> o,
oy
o where r € (O0,1) is the unique root of
e K+l
)"-,.l." ur - (A+ p)r+ A =0
e "
(see Section 3.2 of Gross and llarris (1985)). Clearly
: * -1y e
w a {(n) = w(n) 2 m{n')q(n .n)f(n".n)
:1.: n'
e _ -1 . ,
e = w(n) r(n + K)q{(n + K.n)
ot
G K
- =ur =pu + Al - I/r).
Thus. we conclude by Theorem 2.3 (ii) that the process N is
e
‘:\‘ P + A1 - 1/r)). One would probably not anticipate this result from
AAY
I
\
"-,' the description of the process, or even from carlier work in this area.
e For the special case in which X is the M/M/! queue., we have K = 1,
}I
:J‘ r = Mu, and so N, which is the departure process, is P(A). Burke (1956)
W
s
& and Reich (1957) were the first ones to prove this.
o Example 2.5. Queucs With Compound Poisson Arrivals and Poisson
) »
': 1 Departures. Suppose the Markov process has the state space Z, and
KL
e transition rates
:) m- | -
g(n. n+m) = A p (1l - p) m> 1, n ¢ 7
o n +
.t," ga(n. n - 1) =p n >l
ol
B
h .
‘|:::q where )\n. u are positive and O < p < 1. This process represents the
by
number of customers in a queueing system in which batches of customers
i
‘o
i) .
.l,' arrive at the rate )\n when n customers are present and the number of
&
R A
,l:..l customers in a batch has a geometric distribution with parameter p. The
Y
- @. customers depart at the rate ", when n are in the system. The
'
L) .
':: equilibrium distribution of X is
AV ) 1 oy 0ol
1 NG = 0 e ‘ ;
" m(n) = w(O)A\ o TN ) no2l,
‘ k=1

Y 'u"'a" "‘n N 'l' 'o A :':‘:,"u ’l"'.' .'s l‘-‘!,"'.v ol.o‘tf.'lf:'O‘,:‘l»

AOAMRNAINK] ] :
e |.-‘1,' T A '.n':..‘f.a ‘.0".0.'.0 B, a

)
.,.l.
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:‘ﬂ provided the sum of these terms over n is finite, which we assume is true
2
w (see Kook (1988)).

‘"

X Suppose thot N is the point process ol customer departures. This is

,jﬂ defined by (2.1) with f(n,n') =1 iff n" = n - 1. Clearly,

.. * _

o *(0) = (0) '(1)a(1.0) = A,
o N .
N a (n) = 7(v) w(n + l)g{n + L., n) = Nt PH n >y L.

LCn,

-¢: Thus, if X is stationary and AO = a and An + pu, = a. n 2 1, then the
4.

i departure process N is ¥(a).

Y

o

inj We end this section with elaborations on Theorem 2.3 that establish
vy

:j necessary conditions for N to be Poisson.

[ ) Theorem 2.6. When X is recurrent, the following statements are

3
SN equivalent .
! -/:\
N (i) N, L X_ and N is 2(a).
L) ',’.\ +
! (ii) a(x) = a, x €4,

'
: : (iii) N, L'Xx_ and EN(s.t] = a(t-s), s <t in R.
'

g
: s (iv) Efa(X) | X, =x]=a. xe€4, s<cinR.
AL

Proof. Theorem 2.3 ensures that (ii) implies (i). Clearly (i) implies

(iii). Now, if (iii) holds, then, for s ¢ t in R,

%
'

l"l!

-
i
.A.l
-

%

a(t-s) = EN(s.t] = E[N(s.t] | X, = x]

= f; E[a(Xu) I XS:x]du

)
&
-

the last equality being Lévy's formula. Taking the derivative of this

XX
e

with respect (o t yields (iv). Finally, if equation (iv) holds, then

o
)
-

F
e

taking the derivative of it with respect to t and letting t l s, we

-ii-“
LLC

obtain

o

2 a(y)q(x.y}/q(x) = a(x) for each x.
y

AN AT g T Wy Lo o, ‘- 0 o,

. o ) 2 0Oy - i U ALK e
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This says that a is a harmonic function of the Markov matrix
{a(x.y)7/q(x)}}. Now. this matrix is recurrent under the assumption that X
is recurrent. But we know {see for instance Section 7.2 of Cinlar
(1975)) that harmonic functions ol irreducible, recurrent Markov chains
are constant  This observation and equation (iv) imply (ii).0
Theorem 2.7. When X is stationary with equilibrium distribution n, the
following statements are equivalent.
(1) N_LX_ and N is #(a).

(ii) a*(x) =a, x €a€.

(iii) N_ L X, and EN(0.1] =

(iv) E[a*(x,) | X, =x]=a. x€a.s<CinR.

(v) & (x) =3 a(y)n(y)
y

Proof. The equivalence of (i) - (iv) follows {rom Theorem 2.6 applied to

a, X € Jd.

the reversed-time processes N*. X* defined in the proof of Theorem 2.3.
Furthermore, (v) obviously implies (ii). And (ii) implies (v) since N is
#(a) by (i) and by (2.4)., we have

= EN(0.1] = [ Ea(X )dt = 3 a(y)n(y).
y

Thus (i) - (v) are equivalent statements.O

Remark 2.8. Statement (v), relating a* to a, is the "independence
condition” that is the focus of Melamed (1979), Brémaud (1981) and
Varaiya and Walrand (1081). Their main result, which is implicit in
Theorem 2.7, is as follows: If X is stationary with equilibrium

distribution w, then N_ 1 X+ it and only if u*(x) =2 a{y)r(y). x € 9.
y

In this case, N is P(a) where a is the preceding sum.
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,:I. Although we are considering processes N and X defined on the entire
B ]
o real line, our results herein also apply to such processes defined on any
4
N, time interval I in R. Indeed. consider the process extended to all of R
3
Al
d
“ and then the results apply to these extended processes and hence to their
W restrictions to I.
N
o
x"
l‘.
',::: 3. Ceneral Poisson Functionais of Markov Processes
’

We have been studying the point process N that records the times at

"' which the Markov process X jumps from some x to some y with f(x.y)

We shall now study a more general point process that records additional

.{‘; information at these jumps. Suppose that h is a function from 2 x 4 to

some space X'. Consider the marked point process M on R x 1°' defined by

:':.. (3.1) M(AxB) = X l'(Xt_.X()l(h(X[_.Xt) € B)

F t€A

"4 where f is as above, A x B is in the o-field of R x ' and I(+ € B)

§ the indicator function of B. This M is a functional of X that records
A

-J: the "mark” h(XL—'xl) at each jump time t of X at which f(Xt_.X[) =1. As

’.é a point process, M is simple and M{({t} x 4') = O or I, t € R. Also,

?:l M(A x 4') = N(A) records the times at which M records the marks.

00

s':.::': In this section, we identify conditions on X under which M is

o Poisson with EM((s.t] x B) = a(t-s)F(B), where a > O and F is a

0

;:':; probability measure on ¥°. In this case, the process N of occurrence

3:5: times of the marks of M. is #(a)., and each mark has the distribution F.

'- We call such an M a mirked Poisson process with rate a and mark

’é distribution F, and we simply say M is MP(a.l).

B

,‘

0 %
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4 The approach we used in Section 2 for deriving Poisson characteri-

zations of N readily extends to yield marked Poisson characterizations of
. M. The following re<ult. are analogues of Theorems 2.1, 2.3 and 2.7; the
ﬁ
: analogue of Theorem 2.6 can be seen from Theorem 3.3 and hence is not
. displayed. Their proofs are omitted since they follow the same line of
D
:: reasoning as their counterparts in Section 2. llere we let
o
. a(x.B) = ¥ q(x.y)f(x.y)l(h(x.y) € B)
. y

»* -1 .

; a (x.B) = n(x) ~ 2 w(y)a(y.x)f(y.x)l{(h(y.x) € B).
{ y
b Theorem 3.1. If M+ Lx orM 4 X+. then M is a Poisson process. In
)
o this case, M is #F(a.F) if and only if Ea(X[.B) = alF(B), for each t and
g
¢ B.
"
) Theorem 3.2. (i) If a(x.B) = aF(B), for each x and B, then M+ L x_ and
4 »

M is wr(a.F). (ii) If a (x.B) = aF(B). for each x and B, then M_ 11-X+
and M is MM(a.F).
b Theorem 3.3. When X is stationary with equilibrium distribution w, then
)
)
i the following statements are equivalent.
. (i) M_LX and M is #(a.F).
o
1)
. (ii) o (x.B) = aF(B). for each x and B.
'
& (ii1) M_LX_ and EM((0.1] x B) = aF(B) for each x and B.
* (iv) E[a*(X‘.B) | Xt=x] = aF(B). for cach x, Band s < t in R.
"
'
" (v) «a (x B) = 2 a(y.B)r(y) = aFF(B). for cach x and B.
. Y
" Point processes ol the form (3.1) are useful for representing
4
;y multivariate and compound point processes. Indeed, suppose one is
1
) interested in the n-dimensional compound point process (Ml ..... Mn)
"4
5 defined by
1
{\
p
"
‘l
4
e ) i‘nht,'a:,.o.ef_n'. :'1 l‘. l'. k'n. a’ ;‘ 3 ‘:a:‘ae l:..‘ |.:;:.: "Q&:i!" 0,"05 ,t,‘ 'o.‘ '.‘ '.‘."l Wty ‘&.,}: Iy ‘lﬁ"O“:Q:.‘l‘ :,‘ .Jo‘.'t
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N - s ¢
N (3.2) MJ(A) = LEA t(X(_.Xt)hJ(X[_.X[)
éi where hji 4 x X - R (or any other group). These processes contain the
)
X :: same information as M defined in (3.1) with 4’ = R" and
)
K.
‘N h(x.y) = (hl(x.y) ..... hn(x,y)). More precisely, there is a one-to-one
)
b, correspondence between point processes M on R x R" as in (3.1) and
'
:3§ n-dimensional compound point processes (M1 ..... Mn) as in (3.2). Note
A
x 3 that M on R x R" is M (a,F) if and only if its corresponding (Ml""'Mn)
N is an n-dimensional compound Poisson process with rate a and atom
0
;i distribution F on R". In this case,
3
)
D ; €
E". . P{Ml(s,t] € Bl.....Mn(s.t] Bn)
. [+ ]
P =3 FB x . oB ) (1-s)K S
) 1 n
) g: k=0
prx And each Mj is a compound Poisson process with rate uj = a(l—Fj(O)) and
*6q .
"- N . - .
S atom distribution F_, where Pl....,Fn are the marginal distributions of
1%
) F. Here are some special cases:
P
,;ﬁ Cl: Ml ..... Mn are independent compound Poisson processes with rates
r) R a and atom distributions Fl ..... }n if and only if F = Plx...x[n.
gﬁ C2: (M1 ..... Mn) is an n-dimensional Poisson process with rate a and
0
A4 point allocation distribution F on {O,l)n if and only if I has support on
Y n
A4 {O.1} . In this case, each M  is 9(a ). I
[ J J
t"'.
'?ﬂ c3: M ,..., M are independent Poisson processes with rates a, ..., a_ if
et 1 n 1 n
&
fﬂa‘ and only if F has support on {el. .en). where ej is the jth unit vector
c"/;'.'l
) with 1 in entry j and O's elsewherc.
gt
ﬁg: Remark 3.4. FEach of the preceding theorems hold for these cases Cl, C2,
)
‘l,"
:$$ C3 when the F in the theorem is as specified in the case of interest.
A
N For instance, Theorem 3.2(ii) for case C3 reads: 1If a*(x,(ej}) =a;.
[ X
)

REACNN RN M BRI BASAOBOAINOGOOABUNOUDROUOUTLTAD f A ACACRAALANAGA GO D
'A“ﬁ&“mﬁﬂﬂxf'M““Eﬂn et N e et et gl
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:‘*.
?,‘7 J=1.....m, and a*(x, {z}) = O otherwise, x € 1, then (Ml"' ..Mn)_ 4L X, and
e Ml""’Mn are independent Poisson processes with respective rates
23 ap
: An obvious application of Theorem 3.2(i) shows that the process of
+.3%¢
;'.,‘;. customer arrivals in Example 2.5, when )\n = A, is a compound Poisson
Es', process with rate A and geometric atom distribution pm_l(l—p). The
E?:: following is an example of @ not so obvious compound Puoisson {low in a
¢
- queueing process.
.
f:‘ Example 3.5. A Batch-Service Queueing System With Poisson Arrivals and
£ )
‘:ﬁ:‘: Compound Poisson Departures. Suppose the Markov process has the state
‘{:‘ space Z+ and transition rates
T
N a(0.1) = A(l - p). q{nn+ 1) =A, no>l.
e -1
"-,,-: q(n.n - m) = (1 - p) Il <m< n, n2>l,
, q(n.,0) = upn_l n>l,
, where A\,u are positive and 0 < p < 1. This process represents the number
"" of customers in a queueing system in which customers arri.ve at the rate A
|-)‘l and are served in batches as follows. When there are customers in the
i;i:i system, "buses” arrive at a rate pu to take them immediately from the
i
%E?E:: queue. Busing is a common practice in computer systems and matcrial
't handling systems. The number of customers each bus can take is a1 random
2:.::':' variable with the geometric distribution pm—l(l—p). m 2 1. Also., when
E:::S there are no customers in the queue and a customer arrives, then with
L4
probability p there is a bus available to take the customer without
delay. The equilibrium distribution of X is
w(n) = (0)(1-p)A"/ (1 + pA)". n .
provided A < p + pA, which we assume is true (see Kook (1988)).

() 1 ; W DO U (R Y 0 W () Tyt & RO )
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a0

f .

g Consider the compound point process

LA

D(A) = ¥ max{0, X -X )

Ry -

::/‘ t€EA

d : that describes the total number of departures in the time period A. It
10

-

j records the times at which batches of customers depart and the batch
N sizes as well. This process corresponds to M in (3.1) with f(n,n") =
. iff n' # n and

: n-n n" <{n

4 h(n,n") =

0 n" > n

) Clearly, for each n > O and m » 1},

ol * -1 o . .

,: a (n,{m}) = w(n) * 2 w(n)q{n’ .n)f(n .n)1{(h(n’ .n) = m)

[N n'

R ,

- 4 = w(n) "w(n + m)q(n + m,n)

-

X = (1 - p)F({m}).

LN —
"_q where F({m}) = " l(l—'r). m2> 1, and r = pNM{u+pA). Thus, if X is
)
F

stationary. then Theorem 3.2(ii) implies that M is &P(A(1 - p).F). Hence

-
L)
0 D is a compound process with rate A(l - p) and geometric atom
S
¢ distribution F.
s

"
: 4. Poisson Flows in a Network of Queues

1 We shall consider a queueing network process defined as (ollows.
|/

® Suppose that X(t) = (Xl(l).....Xm(L)). t € R, is a queueing neiwork
[
'::: process on m nodes. where XJ.(t) denotes the number of units (i.e.
e
:::. customers) at node j at time t. The process X takes on values

1‘.

"
. n = (nl.....nm) in 'I.T. let e]. denote the jth unit vector in ZT with 1 in
." .
o entry j and 0's elsewhere. As in Whittle (1986G), we assume that units
Y
1

: move among the m nodes such that X is a Markov process with transition
L)
4
i rates
-
‘.‘
b))
...'

“

KX

L)

W
-

o
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(1.1) q{n.n + ek) = AOk

q(n.n - Cj + ek) = Ajk¢(n - ej)/¢(n). n.i > 1,

J

and q(n,n') = 0 for all other states n'. Here ¢ ZT -+ (0,®), the A's are

q(n.n - oj) = AJO¢(n - ej)/¢(n), n, > 1,

nonnegative, and the subscript O denotes the “outside” node. Under this

assumption, units enter the nodes 1...., m by independent Poisson
processes with respective rates AOI""‘AOm' When X is in state n, then
3 Ajk ¢(n—ej)/¢(n) is the departure rate of units from node j. The Ajk
k

is the "arc-dependent” routing intensity from node j to node k, and
¢(n-ej)/¢(n) is the "system—-dependent” departure intensity from node j
(the ratio representing the potential difference between the system in
state n and in state n—ej with one less customer at node j).

We shall assume that X is irreducible. This is equivalent to the

irreducibility of the Markov routing matrix

m
(4.2) p(j.k) = Ajk/ b} Ajp. j.k=0,..., m,
=0

where AOO = 0. The irreducibility of this matrix is equivalent to the
existence of unique positive numbers Wi wm thivt satisty

m
(4.3) 2w A, - wA ) =0, i=0,..., m,

koo J JK K kj

m n.
where wy = 1. We also assume that Y ¢&(n) T ij is finite. Then X is
n j=0

positive recurrent and has the equilibrium distribution {p.198 of Whittle

(1986G))
m n. m
(4.4) m(n) = e®(n) N w noo 2.,
j=1 !
where ¢ is the normilizing constant. Hereafter, we assume that X is

stationary.
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Now, consider the point process

N o(A) :tzA HX(1) = X(1-) - e})

that represents the times at which units exit the network from node j.

Of course, NjO = 0 when AjO = 0.

Theorem 4.1. The exit processes N10 ..... Nnﬂ are independent Poisson
OCOSSES Wi . S . i

processes with rates WIAIO ..... wmAmO' and (NIO"' 'NmO)— X+.

Whittle (198G) on p. 207 proved this by establishing that the
»*
reverse time process X of X is again a queueing network process and the
exit processes of X are  ust the time reversals of the Poisson input
processes of X*. Theorem 4.1 also lollows from Theorem 3.2(ii) and
Remark 3.4 since, for each n and j.
*(n.fe }) = w(n) 'n(n + e )a(n + e .n) = wA
a e = e, n+e_.n)=wA,
J i’ J J 0
%
and a (n.{z}) = O elsewhere.

Along with these exit processes, consider the point processes

N (A) = 3 1X(1) = X(1=) = e, +e

)
teA k

of times at which units move from node j to node k. We shall now

identify sets J C {l,....,m} and K C {O,]1,....m} such that Nj jeJ. kekK

K
are independent Poisson processes. Suppose that J and K satisfy the

following assumptions:

Al: FEach unit that exits J can never return to J. (To veriity this one
need only check the possible routing under Ajk.)

A2: The system—dependent departure intensiiy for each node j | is of the
form

d(n - ej)/¢(n) = ¢J(nJ - cj)/¢J(“J)

where nI = (nj Tojad). and ¢] is a positive function on such vectors.

OO OO O P
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A3: K is the largest subset of {0.1...., m} such that each unit in K
cannot enter J on a subsequent move. (Note that 0 € K and
] Nk = (JICJ: }\jp:(), /’CJ).
For some networks, J = {1,..., m} may be the only set of nodes that

satisfies Al. At the other extreme are newtworks in which each node is
visited at most once by a unit, and so each subset of nodes satisfies Al.
Assumption A2 is equivalent to being able to factor ¢ as
®(n) = ¢J(nJ)\Il(nk : k€]). Upon selecting J conforming to Al, A2, it is
advantageous to select K as large as possible as we did in A3.

Let XJ([) = (Xj(l)ijtJ). teR, denote the process X on the nodes J
and let 1 denote its state space.

J

Theorem 4.2. The processes N

. jeJ. keK, are independent Poisson
jk J P

processes with respective rates wiA.

ik’ jeJ. keK. Furthermore,

(N :jeJ, keky 1L (X)),

Jk

Proof. Under the assumptions, the X, is a queueing network process on

J

the nodes J with transition rates q](n.n') defined as in (4.1) with the

last line replaced by

qJ(n.n - OJ) = Aj¢J(n - ej)/¢J(n), n.j 2 1, n(JJ.
where A = 2 A.k. Furthermore, XJ his the equilibrium distribution

k(ﬁK .] ~

n.
NJ(H) = CJ¢J(H).U ajJ. nclJ.
jed
This is just the sum of w(n) in (1.1) over all Ny P¢]. Thus, from
Theorem 1.1, we know that Xl's exit processes N, = 2 Njk' jcJ. are
) keK -

independent Poisson processes with respective rates w.AJ. jeJ. and that

(N,gen) 2 (xp),.

~ -
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.: Next, observe that ftor each j ¢ f, the processes Njk' k ¢ K, form a
partition of Nj in which each point of Nj is assigned to the subprocess
!
) :. Njk with probability )\jk/AJ.. independent of everything else. Conse-
1 \' b
‘\A
.r;‘s‘ quently, Njk' k ¢ K. are independent Poisson processes with respective
' . Co \ -
-r, rates (?\J.k/AJ.) (w.]'l\.i) = w_j}\‘jk' keK {see for instance p.89 of Cinlar
‘.( (1975)). This property and the preceding argument yield the assertions.O
)
I Example 4.3. Suppose the network has a node j such that each unit
[\
o passing through the network visits j at most once. Also, assume that
s
W
;«S‘ ¢(n) = 45‘].(11‘j )\P(nklk # J). and let J = {j}. Then the departure processes
o T
o
¥y N. N ,....N. are independent Poisson processes as in Theorem 4.2.
Jo i Jm
° Now. suppose that each node of the network can be visited at most once by
'
| "l
w. " ~ ; . = . T 21O ensy op
-‘::r each unit and ¢(n) (bl(nl) .¢m(nm). [hen each process Njk is (w A k)
«:. some of these processes may be dependent. Consider the arrival processes
?n’l.
) to a fixed node k. le: J denote the set of all nodes j that can never be
P ‘rq
.ﬁ-, reached from k. Then, under the preceding supposition, the arrival
$ -
SCA
i :).: processes Njk' JeJ. are independent Poisson processes as in Theouroa 1.2,
K, .
D) Example 4.4. Multivariate Poisson Flows. Suppose Jl' ....J, are subsets
o
o {1,....m} and Kl' .K“ are subsets of {0.1,...,m} (the subsets need
Gt
".: not be disjoint). Consider the process Ni =2 Njk of times at which
o jed;
keK.
" l
‘0': units move from some node in J. to some node in K.. Suppose the sets
e i i
)
::::: J = JIU' ..UJU and K = KIU' ..UK” satisfy assumptions Al, A2, A3, or that
0,
. they are contained in a pair of such sets. Then Njk' jeJ. keK, are
6.."
‘:.‘ , independent Poisson processes as in Theorem 1.2. Consequently,
DO -
o
‘N (Nl,....N”) is a v-dimensional Poisson process with rate a = 2 w.)\.k and
:" _i(:J J
2. ke K
s
s point allocation distribution
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F({ Ye)) =a 't xhwa
1&1 j.k JJ
where 1 C {l.....v}, and the sum is over all j in I Ji' and k in N Ki'
iel iel
The Nl ..... Nu are independent if N Ji = ¢ and N Ki = ¢.
i i

Fxample 4.5. Networks With Several Types of Units. C(onsider a network as
above in which each unit carries a label from a linite set 4 of types and
the label may change when the unit moves. We represent this network by
the process X(t) = {an(t): aed, j=l..... m},. teR, where Xuj(l) is the
number of type a units at node j at time t. A typical state of X is
= (nuji aed, j=1,...,m). We assume that X is a Markov process with

transition rates {(analogous to (4.1))

q(n.n + e

bk) = A0 bk

aj + ebk) = Aaj.bk ¢(n - euj)/¢(n). ”uj 2 1.

¢(n - eaj)/¢(n). n

q(n.n - e

aln.n —e ) = N0 0

Under assumptions as above, the process X has the equilibrium
distribution
N
m(n) = cd(n) T w I
s al)
a)
The results above hold for this network - one need only use double

indices aj. bk in place of j.k and consider the point processes

NWi bk’ aj ¢ J, bk € K, where J, K satisfy assumptions Al, A2, A3 with

double indices. For instance. suppose A C 4 is such that o unit with a

label from #4\A can never carry a label from A. Consider the point

processes of times at which units change labels from A to :NA.  These
processes are qu bk * ajel, bkak, where J = {oj: aeA, j=1,. ., m} and
{bk: bCA\A, k=0,..., m}. Clearly ] satisfies Al and K satisfies A3,

L)
..|..|. Y,

N . . .
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Suppose J also satislies A2. Then the preceding point processes are

independent Poisson processes with respective rates {w

aj d] bk)' and the

past of these processes is independent of (XJ)+
The preceding results are for networks in which only one unit can
move at a time. In networks with simultaneous movement of units, the

flows among the nodes my be compound Poisson processes. Kook (1988) has

characterized such flows using Theorem 3.2.

5. Further Ceneralizations

The results in Sections 2 and 3 readily extend Lo more general
processes. We discussed some of these situations in the remarks above.
Here are some more generalizations.
Markov Processes With General State Spaces. Suppose that X = {XliteR}
a pure jump Markov process with a general state space F and associated
o-field §, and its transition kernel is K(x.B), xeE. Be&. That is, the
exponential sojourn time in state x has parameter K(x,E) and the
probability of X jumping from x into B is K(x.B)/K(x.E). Then the
results in Sections 2 and 3 hold with the sums replaced by integrals.
For example, a* is the Radon-Nikodym derivative

a(x) = é m(dy)K(y.dx )t (y.x)/m(dx).

Functionals Involving Sojourn Times. Suppose X is a Markov process as in
Section 2 and

N(A) = ¥ Y(X(,X(_.W()
teA

where Wl is the waiting time in state XL— and f:7 x 1 x R+ - {0, 1}. Then

the results of Section 2 hold for this N with a, a defined by

7
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AT

" s f F (d
0 a(x) = ; 0 (x.y)f(x.y.w) x( w)
"o %* -1 0 . .
Y a (x) = m(x) [ 2 w(y)aly. x)(y.x.w)F (dw)
b :\. y X
'$-. where Fx(w) = 1 - exp(-wq(x)). Similarly, the results of Section 3 hold
~
b for M as a functional of Wt as well as of XL.X[ . One can generalize
. -
39 further by assuming that X is a semi-Markov process and replacing Fx by a
5> .
:', general sojourn time distribution Fx
o '
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